

aiorpcX

[image: _images/aiorpcX.svg]
 [http://badge.fury.io/py/aiorpcX][image: _images/aiorpcX1.svg]
 [https://travis-ci.org/kyuupichan/aiorpcX][image: _images/badge.svg]
 [https://coveralls.io/github/kyuupichan/aiorpcX]A generic asyncio library implementation of RPC suitable for an
application that is a client, server or both.

The package includes a module with full coverage of JSON RPC [http://www.jsonrpc.org/] versions 1.0 and 2.0, JSON RPC protocol
auto-detection, and arbitrary message framing. It also comes with a
SOCKS proxy client.

The current version is 0.22.1.

The library API is not stable and may change radically. These docs
are out of date and will be updated when the API settles.

Source Code

The project is hosted on GitHub [https://github.com/kyuupichan/aiorpcX/]. and uses Travis [https://travis-ci.org/kyuupichan/aiorpcX] for Continuous
Integration.

Python version at least 3.6 is required.

Please submit an issue on the bug tracker [https://github.com/kyuupichan/aiorpcX/issues] if you have found a
bug or have a suggestion to improve the library.

Authors and License

Neil Booth wrote the code, which is derived from the original JSON RPC
code of ElectrumX [https://github.com/kyuupichan/electrumx/].

The code is released under the MIT Licence [https://github.com/kyuupichan/aiorpcX/LICENCE].

Documentation

	ChangeLog
	Version 0.22.1 (25 May 2021)

	Version 0.22.0 (25 Apr 2021)

	Version 0.21.1 (24 Apr 2021)

	Version 0.21.0 (11 Mar 2021)

	Version 0.20.2 (10 Mar 2021)

	Version 0.20.1 (06 Mar 2021)

	Version 0.18.4 (20 Nov 2019)

	Version 0.18.3 (19 May 2019)

	Version 0.18.2 (19 May 2019)

	Version 0.18.1 (09 May 2019)

	Version 0.18.0 (09 May 2019)

	Version 0.17.0 (22 Apr 2019)

	Version 0.16.2 (21 Apr 2019)

	Version 0.16.1 (20 Apr 2019)

	Version 0.16.0 (19 Apr 2019)

	Version 0.15.0 (16 Apr 2019)

	Version 0.14.1 (16 Apr 2019)

	Version 0.14.0 (15 Apr 2019)

	Version 0.13.6 (14 Apr 2019)

	Version 0.13.5 (13 Apr 2019)

	Version 0.13.3 (13 Apr 2019)

	Version 0.13.2 (12 Apr 2019)

	Version 0.13.0 (12 Apr 2019)

	Version 0.12.1 (09 Apr 2019)

	Version 0.12.0 (09 Apr 2019)

	Version 0.11.0 (06 Apr 2019)

	Version 0.10.5 (16 Feb 2019)

	Version 0.10.4 (07 Feb 2019)

	Version 0.10.3 (07 Feb 2019)

	Version 0.10.2 (29 Dec 2018)

	Version 0.10.1 (07 Nov 2018)

	Version 0.10.0 (05 Nov 2018)

	Version 0.9.1 (04 Nov 2018)

	Version 0.9.0 (25 Oct 2018)

	Version 0.8.2 (25 Sep 2018)

	Version 0.8.1 (12 Sep 2018)

	Version 0.8.0 (12 Sep 2018)

	Version 0.7.3 (17 Aug 2018)

	Version 0.7.2 (16 Aug 2018)

	Version 0.7.1 (09 Aug 2018)

	Version 0.7.0 (08 Aug 2018)

	Version 0.6.2 (06 Aug 2018)

	Version 0.6.0 (04 Aug 2018)

	Version 0.5.9 (29 Jul 2018)

	Version 0.5.8 (28 Jul 2018)

	Version 0.5.7 (27 Jul 2018)

	Version 0.5.6

	Framing

	JSON RPC
	Message interpretation

	Message construction

	RPC items
	RPC Protocol Classes

	Exceptions
	Server

	Sessions

	SOCKS Proxy
	Exceptions

	Authentication

	Protocols

	Proxy

Indices and tables

	Index

	Search Page

ChangeLog

Note

The aiorpcX API changes regularly and is still unstable. I hope to finalize it
for a 1.0 release in the coming months.

Version 0.22.1 (25 May 2021)

	release tasks as they complete in the task group; this might appear as a memory-leak for
long-standing sessions

Version 0.22.0 (25 Apr 2021)

	join() waits for all cancelled tasks to finish, including daemonic ones

Version 0.21.1 (24 Apr 2021)

	handle peername of None in network code

	strip redundant whitespace from JSON (SomberNight)

Version 0.21.0 (11 Mar 2021)

	There have been significant semantic and API changes for TaskGroups. Their behaviour is
now consistent, reliable and they have the same semantics as curio. As such I consider
their API finalized and stable. In addition to the notes below for 0.20.x:

	closed() became the attribute joined.

	cancel_remaining() does not cancel daemonic tasks. As before it waits for the
cancelled tasks to complete.

	On return from join() all tasks including deamonic ones have been cancelled, but nothing
is waited for. If leaving a TaskGroup context because of an exception,
cancel_remaining() - which can block - is called before join().

Version 0.20.2 (10 Mar 2021)

	result, exception, results and exceptions are now attributes. They raise a RuntimeError
if called before a TaskGroup’s join() operation has returned.

Version 0.20.1 (06 Mar 2021)

	this release contains some significant API changes which users will need to carefully check
their code for.

	the report_crash argument to spawn() is removed; instead a new one is named daemon. A
daemon task’s exception (if any) is ignored by a TaskGroup.

	the join() method of TaskGroup (and so also when TaskGroup is used as a context manager)
does not raise the exception of failed tasks. The full semantics are precisely
described in the TaskGroup() docstring. Briefly: any task being cancelled or raising an
exception causes join() to finish and all remaining tasks, including daemon tasks, to be
cancelled. join() does not propagate task exceptions.

	the cancel_remaining() method of TaskGroup does not propagate any task exceptions

	TaskGroup supports the additional attributes ‘tasks’ and ‘daemons’. Also, after join()
has completed, result() returns the result (or raises the exception) of the first
completed task. exception() returns the exception (if any) of the first completed task.
results() returns the results of all tasks and exceptions() returns the exceptions
raised by all tasks. daemon tasks are ignored.

	The above changes bring the implementation in line with curio proper and the semantic
changes it made over a year ago, and ensure that join() behaves consistently when called
more than once.

Version 0.18.4 (20 Nov 2019)

	handle time.time() not making progress. fixing #26 [https://github.com/kyuupichan/aiorpcX/issues/26] (SomberNight)

	handle SOCKSError in _connect_one (SomberNight)

	add SOCKSRandomAuth: Jeremy Rand

Version 0.18.3 (19 May 2019)

	minor bugfix release, fixing #22 [https://github.com/kyuupichan/aiorpcX/issues/22]

	make JSON IDs independent across sessions, make websockets dependency optional (SomberNight)

Version 0.18.2 (19 May 2019)

	minor bugfix release

Version 0.18.1 (09 May 2019)

	convert incoming websocket text frames to binary. Convert outgoing messages to text
frames if possible.

Version 0.18.0 (09 May 2019)

	Add websocket support as client and server by using Aymeric Augustin’s excellent
websockets [https://github.com/aaugustin/websockets/] package.

Unfortunately this required changing several APIs. The code now distinguishes the
previous TCP and SSL based-connections as raw sockets from the new websockets. The
old Connector and Server classes are gone. Use connect_rs() and serve_rs() to
connect a client and start a server for raw sockets; and connect_ws() and serve_ws()
to do the same for websockets.

SessionBase no longer inherits asyncio.Protocol as it is now transport-independent.
Sessions no longer take a framer in their constructor: websocket messages are already
framed, so instead a framer is passed to connect_rs() and serve_rs() if the default
NewlineFramer is not wanted.

A session is only instantiated when a connection handshake is completed, so
connection_made() is no longer a method. connection_lost() and abort() are now
coroutines; if overriding either be sure to call the base class implementation.

is_send_buffer_full() was removed.

	Updated and added new examples

	JSON RPC message handling was made more efficient by using futures instead of events
internally

Version 0.17.0 (22 Apr 2019)

	Add some new APIs, update others

	Add Service, NetAddress, ServicePart, validate_port, validate_protocol

	SessionBase: new API proxy() and remote_address(). Remove peer_address()
and peer_address_str()

	SOCKSProxy: auto_detect_address(), auto_detect_host() renamed auto_detect_at_address()
and auto_detect_at_host(). auto_detect_at_address() takes a NetAddress.

Version 0.16.2 (21 Apr 2019)

	fix force-close bug

Version 0.16.1 (20 Apr 2019)

	resolve socks proxy host using getaddrinfo. In particular, IPv6 is supported.

	add two new APIs

Version 0.16.0 (19 Apr 2019)

	session closing is now robust; it is safe to await session.close() from anywhere

	API change: FinalRPCError removed; raise ReplyAndDisconnect instead. This responds with
a normal result, or an error, and then disconnects. e.g.:

raise ReplyAndDisconnect(23)
raise ReplyAndDisconnect(RPCError(1, "message"))

	the session base class’ private method _close() is removed. Use await close() instead.

	workaround uvloop bug https://github.com/MagicStack/uvloop/issues/246

Version 0.15.0 (16 Apr 2019)

	error handling improved to include costing

Version 0.14.1 (16 Apr 2019)

	fix a bad assertion

Version 0.14.0 (15 Apr 2019)

	timeout handling improvements

	RPCSession: add log_me, send_request_timeout

	Concurrency: respect semaphore queue ordering

	cleaner protocol auto-detection

Version 0.13.6 (14 Apr 2019)

	RPCSession: concurrency control of outgoing requests to target a given response time

	SessionBase: processing_timeout will time-out processing of incoming requests. This
helps prevent ever-growing request backlogs.

	SessionBase: add is_send_buffer_full()

Version 0.13.5 (13 Apr 2019)

	robustify concurrency handling

Version 0.13.3 (13 Apr 2019)

	export Concurrency class. Tweak some default constants.

Version 0.13.2 (12 Apr 2019)

	wait for task to complete on close. Concurrency improvements.

Version 0.13.0 (12 Apr 2019)

	fix concurrency handling; bump version as API changed

Version 0.12.1 (09 Apr 2019)

	improve concurrency handling; expose new API

Version 0.12.0 (09 Apr 2019)

	switch from bandwidth to a generic cost metric for sessions

Version 0.11.0 (06 Apr 2019)

	rename ‘normalize_corofunc’ to ‘instantiate_coroutine’

	remove spawn() member of SessionBase

	add FinalRPCError (ghost43)

	more reliable cancellation on connection closing

Version 0.10.5 (16 Feb 2019)

	export ‘normalize_corofunc’

	batches: fix handling of session loss; add test

Version 0.10.4 (07 Feb 2019)

	SessionBase: add closed_event, tweak closing process

	testsuite cleanup

Version 0.10.3 (07 Feb 2019)

	NewlineFramer: max_size of 0 does not limit buffering (SomberNight)

	trivial code / deprecation warning cleanups

Version 0.10.2 (29 Dec 2018)

	TaskGroup: faster cancellation (SomberNight)

	as for curio, remove wait argument to TaskGroup.join()

	setup.py: read the file to extract the version; see #10 [https://github.com/kyuupichan/aiorpcX/issues/10]

Version 0.10.1 (07 Nov 2018)

	bugfixes for transport closing and session task spawning

Version 0.10.0 (05 Nov 2018)

	add session.spawn() method

	make various member variables private

Version 0.9.1 (04 Nov 2018)

	abort sessions which wait too long to send a message

Version 0.9.0 (25 Oct 2018)

	support of binary messaging and framing

	support of plain messaging protocols. Messages do not have an ID
and do not expect a response; any response cannot reference the
message causing it as it has no ID (e.g. the Bitcoin network
protocol).

	removed the client / server session distinction. As a result there
is now only a single session class for JSONRPC-style messaging,
namely RPCSession, and a single session class for plain messaging
protocols, MessageSession. Client connections are initiated by the
session-independent Connector class.

Version 0.8.2 (25 Sep 2018)

	bw_limit defaults to 0 for ClientSession, bandwidth limiting is mainly
intended for servers

	don’t close proxy sockets on an exception during the initial SOCKS
handshake; see #8 [https://github.com/kyuupichan/aiorpcX/issues/8]. This works around an asyncio bug still present
in Python 3.7

	make CodeMessageError hashable. This works around a Python bug fixed
somewhere between Python 3.6.4 and 3.6.6

Version 0.8.1 (12 Sep 2018)

	remove report_crash arguments from TaskGroup methods

	ignore bandwidth limits if set <= 0

Version 0.8.0 (12 Sep 2018)

	change TaskGroup semantics: the first error of a member task is
raised by the TaskGroup instead of TaskGroupError (which is now
removed). Code wanting to query the status / results of member
tasks should loop on group.next_done().

Version 0.7.3 (17 Aug 2018)

	fix #5 [https://github.com/kyuupichan/aiorpcX/issues/5]; more tests added

Version 0.7.2 (16 Aug 2018)

	Restore batch functionality in Session class

	Less verbose logging

	Increment and test error count on protocol errors

	fix #4 [https://github.com/kyuupichan/aiorpcX/issues/4]

Version 0.7.1 (09 Aug 2018)

	TaskGroup.cancel_remaining() must wait for the tasks to complete

	Fix some tests whose success / failure depended on time races

	fix #3 [https://github.com/kyuupichan/aiorpcX/issues/3]

Version 0.7.0 (08 Aug 2018)

	Fix wait=object and cancellation

	Change Session and JSONRPCConnection APIs

	Fix a test that would hang on some systems

Version 0.6.2 (06 Aug 2018)

	Fix a couple of issues shown up by use in ElectrumX; add testcases

Version 0.6.0 (04 Aug 2018)

	Rework the API; docs are not yet updated

	New JSONRPCConnection object that manages the state of a connection,
replacing the RPCProcessor class. It hides the concept of request
IDs from higher layers; allowing simpler and more intuitive RPC
datastructures

	The API now prefers async interfaces. In particular, request handlers
must be async

	The API generally throws exceptions earlier for nonsense conditions

	TimeOut and TaskSet classes removed; use the superior curio
primitives that 0.5.7 introduced instead

	SOCKS protocol implementation made i/o agnostic so the code can be
used whatever your I/O framework (sync, async, threads etc). The
Proxy class, like the session class, remains asyncio

	Testsuite cleaned up and shrunk, now works in Python 3.7 and also
tests uvloop

Version 0.5.9 (29 Jul 2018)

	Remove “async” from __aiter__ which apparently breaks Python 3.7

Version 0.5.8 (28 Jul 2018)

	Fix __str__ in TaskGroupError

Version 0.5.7 (27 Jul 2018)

	Implement some handy abstractions from curio on top of asyncio

Version 0.5.6

	Define a ConnectionError exception, and set it on uncomplete
requests when a connection is lost. Previously, those requests were
cancelled, which does not give an informative error message.

Framing

Message framing is the method by which RPC messages are wrapped
in a byte stream so that message boundaries can be determined.

aiorpcx provides an abstract base class for framers, and a
single implementation: NewlineFramer. A framer must know how
to take outgoing messages and frame them, and also how to break an
incoming byte stream into message frames in order to extract the RPC
messages from it.

	
class aiorpcx.FramerBase

	Derive from this class to implement your own message framing
methodology.

	
frame(messages)

	Frame each message and return the concatenated result.

	Parameters

	message – an iterable; each message should be of type
bytes or bytearray

	Returns

	the concatenated bytestream

	Return type

	bytes

	
messages(data)

	
	Parameters

	data – incoming data of type bytes or
bytearray

	Raises

	MemoryError – if the internal data buffer overflows

Note

since this may raise an exception, the caller should
process messages as they are yielded. Converting the
messages to a list will lose earlier ones if an
exception is raised later.

	
class aiorpcx.NewlineFramer(max_size=1000000)

	A framer where messages are delimited by an ASCII newline character in
a text stream. The internal buffer for partial messages will hold up
to max_size bytes.

JSON RPC

The aiorpcx module provides classes to interpret and construct
JSON RPC protocol messages. Class instances are not used; all methods
are class methods. Just call methods on the classes directly.

	
class aiorpcx.JSONRPC

	

An abstract base class for concrete protocol classes.
JSONRPCv1 and JSONRPCv2 are derived protocol classes
implementing JSON RPC versions 1.0 and 2.0 in a strict way.

	
class aiorpcx.JSONRPCv1

	A derived class of JSONRPC implementing version 1.0 of the
specification.

	
class aiorpcx.JSONRPCv2

	A derived class of JSONRPC implementing version 2.0 of the
specification.

	
class aiorpcx.JSONRPCLoose

	A derived class of JSONRPC. It accepts messages that
conform to either version 1.0 or version 2.0. As it is loose, it
will also accept messages that conform strictly to neither version.

Unfortunately it is not possible to send messages that are
acceptable to strict implementations of both versions 1.0 and 2.0,
so it sends version 2.0 messages.

	
class aiorpcx.JSONRPCAutoDetect

	Auto-detects the JSON RPC protocol version spoken by the remote side
based on the first incoming message, from JSONRPCv1,
JSONRPCv2 and JSONRPCLoose. The RPC processor
will then switch to that protocol version.

Message interpretation

	
classmethod JSONRPC.message_to_item(message)

	Convert a binary message into an RPC object describing the message
and return it.

	Parameters

	message (bytes) – the message to interpret

	Returns

	the RPC object

	Return type

	RPCRequest, RPCResponse or
RPCBatch.

If the message is ill-formed, return an RPCRequest object
with its method set to an RPCError instance
describing the error.

Message construction

These functions convert an RPC item into a binary message that can be
passed over the network after framing.

	
classmethod JSONRPC.request_message(item)

	Convert a request item to a message.

	Parameters

	item – an RPCRequest item

	Returns

	the message

	Return type

	bytes

	
classmethod JSONRPC.response_message(item)

	Convert a response item to a message.

	Parameters

	item – an RPCResponse item

	Returns

	the message

	Return type

	bytes

	
classmethod JSONRPC.error_message(item)

	Convert an error item to a message.

	Parameters

	item – an RPCError item

	Returns

	the message

	Return type

	bytes

	
classmethod JSONRPC.batch_message(item)

	Convert a batch item to a message.

	Parameters

	item – an RPCBatch item

	Returns

	the message

	Return type

	bytes

	
classmethod JSONRPC.encode_payload(payload)

	Encode a Python object as a JSON string and convert it to bytes.
If the object cannot be encoded as JSON, a JSON “internal error”
error message is returned instead, with ID equal to the “id” member
of payload if that is a dictionary, otherwise None.

	Parameters

	payload – a Python object that can be represented as JSON.
Numbers, strings, lists, dictionaries,
True, False and None are
all valid.

	Returns

	a JSON message

	Return type

	bytes

RPC items

The aiorpcx module defines some classes, instances of which
will be returned by some of its APIs. You should not need to
instantiate these objects directly.

An instance of one of these classes is called an item.

	
class aiorpcx.RPCRequest

	An RPC request or notification that has been received, or an
outgoing notification.

Outgoing requests are represented by RPCRequestOut objects.

	
method

	The RPC method being invoked, a string.

If an incoming request is ill-formed, so that, e.g., its method
could not be determined, then this will be an RPCError
instance that describes the error.

	
args

	The arguments passed to the RPC method. This is a list or a
dictionary, a dictionary if the arguments were passed by
parameter name.

	
request_id

	The ID given to the request so that responses can be associated
with requests. Normally an integer, or None if the
request is a notification. Rarely it might be a floating
point number or string.

	
is_notification()

	Returns True if the request is a notification (its
request_id is None), otherwise False.

	
class aiorpcx.RPCRequestOut

	An outgoing RPC request that is not a notification. A subclass of
RPCRequest and asyncio.Future.

When an outgoing request is created, typically via the
send_request() method of a client or server session, you can
specify a callback to be called when the request is done. The
callback is passed the request object, and the result can be
obtained via its result() method.

A request can also be await-ed. Currently the result of await-ing
is the same as calling result() on the request but this may
change in future.

	
class aiorpcx.RPCResponse

	An incoming or outgoing response. Outgoing response objects are
automatically created by the framework when a request handler
returns its result.

	
result

	The response result, a Python object. If an error occurred this
will be an RPCError object describing the error.

	
request_id

	The ID of the request this is a repsonse to. Notifications do
not get responses so this will never be None.

If result in an RPCError their
request_id attributes will match.

	
class aiorpcx.RPCError

	Represents an error, either in an RPCResponse object if an
error occurred processing a request, or in a RPCRequest if
an incoming request was ill-formed.

	
message

	The error message as a string.

	
code

	The error code, an integer.

	
request_id

	The ID of the request that gave an error if it could be
determined, otherwise None.

	
class aiorpcx.RPCBatch

	Represents an incoming or outgoing RPC response batch, or an
incoming RPC request batch.

	
items

	A list of the items in the batch. The list cannot be empty, and
each item will be an RPCResponse object for a response
batch, and an RPCRequest object for a request batch.

Notifications and requests can be mixed together.

Batches are iterable through their items, and taking their length
returns the length of the items list.

	
requests()

	A generator that yields non-notification items of a request
batch, or each item for a response batch.

	
request_ids()

	A frozenset of all request IDs in the batch, ignoring
notifications.

	
is_request_batch()

	Return True if the batch is a request batch.

	
class aiorpcx.RPCBatchOut

	An outgoing RPC batch. A subclass of RPCBatch and
asyncio.Future.

When an outgoing request batch is created, typically via the
new_batch() method of a client or server session, you can
specify a callback to be called when the batch is done. The
callback is passed the batch object.

Each non-notification item in an RPCBatchOut object is
itself an RPCRequestOut object that can be independently
waited on or cancelled. Notification items are RPCRequest
objects. Since batches are responded to as a whole, all member
requests will be completed simultaneously. The order of callbacks
of member requests, and of the batch itself, is unspecified.

Cancelling a batch, or calling its set_result() or
set_exception() methods cancels all its requests.

	
add_request(method, args=None, on_done=None)

	Add a request to the batch. A callback can be specified that will
be called when the request completes. Returns the
RPCRequestOut request that was added to the batch.

	
add_notification(method, args=None)

	Add a notification to the batch.

RPC Protocol Classes

RPC protocol classes should inherit from RPCProtocolBase.
The base class provides a few utility functions returning
RPCError objects. The derived class should redefine some
constant class attributes.

	
class aiorpcx.RPCProtocolBase

	
	
INTERNAL_ERROR

	The integer error code to use for an internal error.

	
INVALID_ARGS

	The integer error code to use when an RPC request passes invalid
arguments.

	
INVALID_REQUEST

	The integer error code to use when an RPC request is invalid.

	
METHOD_NOT_FOUND

	The integer error code to use when an RPC request is for a
non-existent method.

	
classmethod JSONRPC.internal_error(request_id)

	Return an RPCError object with error code
INTERNAL_ERROR for the given request ID. The error message
will be "internal error processing request".

	Parameters

	request_id – the request ID, normally an integer or string

	Returns

	the error object

	Return type

	RPCError

	
classmethod JSONRPC.args_error(message)

	Return an RPCError object with error code
INVALID_ARGS with the given error message and a request ID
of None.

	Parameters

	message (str) – the error message

	Returns

	the error object

	Return type

	RPCError

	
classmethod JSONRPC.invalid_request(message, request_id=None)

	Return an RPCError object with error code
INVALID_REQUEST with the given error message and
request ID.

	Parameters

	
	message (str) – the error message

	request_id – the request ID, normally an integer or string

	Returns

	the error object

	Return type

	RPCError

	
classmethod JSONRPC.method_not_found(message)

	Return an RPCError object with error code
METHOD_NOT_FOUND with the given error message and a request
ID None.

	Parameters

	message (str) – the error message

	Returns

	the error object

	Return type

	RPCError

Exceptions

	
exception aiorpcx.ConnectionError

	When a connection is lost that has pending requests, this exception is set on
those requests.

Server

A simple wrapper around an asyncio.Server object (see
asyncio.Server [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.Server]).

	
class aiorpcx.Server(protocol_factory, host=None, port=None, *, loop=None, **kwargs)

	Creates a server that listens for connections on host and port.
The server does not actually start listening until listen() is
await-ed.

protocol_factory is any callable returning an
asyncio.Protocol instance. You might find returning an
instance of ServerSession, or a class derived from it, more
useful.

loop is the event loop to use, or asyncio.get_event_loop()
if None.

kwargs are passed through to loop.create_server() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.AbstractEventLoop.create_server].

A server instance has the following attributes:

	
loop

	The event loop being used.

	
host

	The host passed to the constructor

	
port

	The port passed to the constructor

	
server

	The underlying asyncio.Server object when the server is
listening, otherwise None.

	
listen()

	Start listening for incoming connections. Return an
asyncio.Server instance, which can also be accessed via
server.

This method is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

	
close()

	Close the listening socket if the server is listening, and wait
for it to close. Return immediately if the server is not
listening.

This does nothing to protocols and transports handling existing
connections. On return server is None.

	
wait_closed()

	Returns when the server has closed.

This method is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

Sessions

Convenience classes are provided for client and server sessions.

	
class aiorpcx.ClientSession(host, port, *, rpc_protocol=None, framer=None, scheduler=None, loop=None, proxy=None, **kwargs)

	An instance of an asyncio.Protocol class that represents an
RPC session with a remote server at host and port, as documented
in loop.create_connection() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.AbstractEventLoop.create_connection].`

If proxy is not given, create_connection() uses
loop.create_connection() to attempt a connection, otherwise
SOCKSProxy.create_connection(). You can pass additional
arguments to those functions with kwargs (host and port and
loop are used as given).

rpc_protocol specifies the RPC protocol the server speaks. If
None the protocol returned by default_rpc_protocol()
is used.

framer handles RPC message framing, and if None then the
framer returned by default_framer() is used.

scheduler should be left as None.

Logging will be sent to logger, None will use a logger
specific to the ClientSession object’s class.

	
create_connection()

	Make a connection attempt to the remote server. If successful
this return a (transport, protocol) pair.

This method is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

	
default_rpc_protocol()

	You can override this method to provide a default RPC protocol.
JSONRPCv2 is returned by the default implementation.

	
default_framer()

	You can override this method to provide a default message frmaer.
A new NewlineFramer instance is returned by the default
implementation.

The ClientSession and ServerSession classes share a
base class that has the following attributes and methods:

SOCKS Proxy

The aiorpcx package includes a SOCKS [https://en.wikipedia.org/wiki/SOCKS] proxy client. It understands
the SOCKS4, SOCKS4a and SOCKS5 protocols.

Exceptions

	
exception aiorpcx.SOCKSError

	The base class of SOCKS exceptions. Each raised exception will be
an instance of a derived class.

	
exception aiorpcx.SOCKSProtocolError

	A subclass of SOCKSError. Raised when the proxy does not
follow the SOCKS protocol.

	
exception aiorpcx.SOCKSFailure

	A subclass of SOCKSError. Raised when the proxy refuses
or fails to make a connection.

Authentication

Currently the only supported authentication method is with a username
and password. Usernames can be used by all SOCKS protocols, but only
SOCKS5 uses the password.

	
class aiorpcx.SOCKSUserAuth

	A namedtuple for authentication with a SOCKS server. It
has two members:

	
username

	A string.

	
password

	A string. Ignored by the SOCKS4 and SOCKS4a
protocols.

Protocols

When creating a SocksProxy object, a protocol must be
specified and be one of the following.

	
class aiorpcx.SOCKS4

	An abstract class representing the SOCKS4 protocol.

	
class aiorpcx.SOCKS4a

	An abstract class representing the SOCKS4a protocol.

	
class aiorpcx.SOCKS5

	An abstract class representing the SOCKS5 protocol.

Proxy

You can create a SOCKSProxy object directly, but using one
of its auto-detection class methods is likely more useful.

	
class aiorpcx.SOCKSProxy(address, protocol, auth)

	An object representing a SOCKS proxy. The address is a Python
socket address [https://docs.python.org/3/library/socket.html#socket-families]
typically a (host, port) pair for IPv4, and a (host, port, flowinfo,
scopeid) tuple for IPv6.

The protocol is one of SOCKS4, SOCKS4a and
SOCKS5.

auth is a SOCKSUserAuth object or None.

After construction, host, port and peername
are set to None.

	
classmethod auto_detect_address(address, auth, *, loop=None, timeout=5.0)

	Try to detect a SOCKS proxy at address.

Protocols SOCKS5, SOCKS4a and SOCKS4
are tried in order. If a SOCKS proxy is detected return a
SOCKSProxy object, otherwise None. Returning a
proxy object only means one was detected, not that it is
functioning - for example, it may not have full network
connectivity.

auth is a SOCKSUserAuth object or None.

If testing any protocol takes more than timeout seconds, it is
timed out and taken as not detected.

This class method is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

	
classmethod auto_detect_host(host, ports, auth, *, loop=None, timeout=5.0)

	Try to detect a SOCKS proxy on host on one of the ports.

Call auto_detect_address() for each (host, port) pair
until a proxy is detected, and return it, otherwise
None.

auth is a SOCKSUserAuth object or None.

If testing any protocol on any port takes more than timeout
seconds, it is timed out and taken as not detected.

This class method is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

	
create_connection(protocol_factory, host, port, *, resolve=False, loop=None, ssl=None, family=0, proto=0, flags=0, timeout=30.0)

	Connect to (host, port) through the proxy in the background.
When successful, the coroutine returns a (transport, protocol,
address) triple, and sets the proxy attribute peername.

	If resolve is True, host is resolved locally
rather than by the proxy. family, proto, flags are the
optional address family, protocol and flags passed to
loop.getaddrinfo() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.AbstractEventLoop.getaddrinfo] to get a list of remote addresses. If
given, these should all be integers from the corresponding
socket module constants.

	ssl is as documented for loop.create_connection() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.AbstractEventLoop.create_connection].

If successfully connected the _address member of the
protocol is set. If resolve is True it is set to the
successful address, otherwise (host, port).

If connecting takes more than timeout seconds an
asyncio.TimeoutError exception is raised.

This method is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

	
host

	Set on a successful create_connection() to the host passed
to the proxy server. This will be the resolved address if its
resolve argument was True.

	
port

	Set on a successful create_connection() to the host passed
to the proxy server.

	
peername

	Set on a successful create_connection() to the result of
socket.getpeername() on the socket connected to the proxy.

Index

 A
 | B
 | C
 | D
 | E
 | F
 | H
 | I
 | J
 | L
 | M
 | N
 | P
 | R
 | S
 | U
 | W

A

 	
 	add_notification() (aiorpcx.RPCBatchOut method)

 	add_request() (aiorpcx.RPCBatchOut method)

 	args (aiorpcx.RPCRequest attribute)

 	
 	args_error() (aiorpcx.RPCProtocolBase.JSONRPC class method)

 	auto_detect_address() (aiorpcx.SOCKSProxy class method)

 	auto_detect_host() (aiorpcx.SOCKSProxy class method)

B

 	
 	batch_message() (aiorpcx.JSONRPC class method)

C

 	
 	ClientSession (class in aiorpcx)

 	close() (aiorpcx.Server method)

 	code (aiorpcx.RPCError attribute)

 	
 	ConnectionError

 	create_connection() (aiorpcx.ClientSession method)

 	(aiorpcx.SOCKSProxy method)

D

 	
 	default_framer() (aiorpcx.ClientSession method)

 	
 	default_rpc_protocol() (aiorpcx.ClientSession method)

E

 	
 	encode_payload() (aiorpcx.JSONRPC class method)

 	
 	error_message() (aiorpcx.JSONRPC class method)

F

 	
 	frame() (aiorpcx.FramerBase method)

 	
 	FramerBase (class in aiorpcx)

H

 	
 	host (aiorpcx.Server attribute)

 	(aiorpcx.SOCKSProxy attribute)

I

 	
 	INTERNAL_ERROR (aiorpcx.RPCProtocolBase attribute)

 	internal_error() (aiorpcx.RPCProtocolBase.JSONRPC class method)

 	INVALID_ARGS (aiorpcx.RPCProtocolBase attribute)

 	INVALID_REQUEST (aiorpcx.RPCProtocolBase attribute)

 	
 	invalid_request() (aiorpcx.RPCProtocolBase.JSONRPC class method)

 	is_notification() (aiorpcx.RPCRequest method)

 	is_request_batch() (aiorpcx.RPCBatch method)

 	items (aiorpcx.RPCBatch attribute)

J

 	
 	JSONRPC (class in aiorpcx)

 	JSONRPCAutoDetect (class in aiorpcx)

 	
 	JSONRPCLoose (class in aiorpcx)

 	JSONRPCv1 (class in aiorpcx)

 	JSONRPCv2 (class in aiorpcx)

L

 	
 	listen() (aiorpcx.Server method)

 	
 	loop (aiorpcx.Server attribute)

M

 	
 	message (aiorpcx.RPCError attribute)

 	message_to_item() (aiorpcx.JSONRPC class method)

 	messages() (aiorpcx.FramerBase method)

 	
 	method (aiorpcx.RPCRequest attribute)

 	METHOD_NOT_FOUND (aiorpcx.RPCProtocolBase attribute)

 	method_not_found() (aiorpcx.RPCProtocolBase.JSONRPC class method)

N

 	
 	NewlineFramer (class in aiorpcx)

P

 	
 	password (aiorpcx.SOCKSUserAuth attribute)

 	peername (aiorpcx.SOCKSProxy attribute)

 	
 	port (aiorpcx.Server attribute)

 	(aiorpcx.SOCKSProxy attribute)

R

 	
 	request_id (aiorpcx.RPCError attribute)

 	(aiorpcx.RPCRequest attribute)

 	(aiorpcx.RPCResponse attribute)

 	request_ids() (aiorpcx.RPCBatch method)

 	request_message() (aiorpcx.JSONRPC class method)

 	requests() (aiorpcx.RPCBatch method)

 	response_message() (aiorpcx.JSONRPC class method)

 	
 	result (aiorpcx.RPCResponse attribute)

 	RPCBatch (class in aiorpcx)

 	RPCBatchOut (class in aiorpcx)

 	RPCError (class in aiorpcx)

 	RPCProtocolBase (class in aiorpcx)

 	RPCRequest (class in aiorpcx)

 	RPCRequestOut (class in aiorpcx)

 	RPCResponse (class in aiorpcx)

S

 	
 	server (aiorpcx.Server attribute)

 	Server (class in aiorpcx)

 	SOCKS4 (class in aiorpcx)

 	SOCKS4a (class in aiorpcx)

 	SOCKS5 (class in aiorpcx)

 	
 	SOCKSError

 	SOCKSFailure

 	SOCKSProtocolError

 	SOCKSProxy (class in aiorpcx)

 	SOCKSUserAuth (class in aiorpcx)

U

 	
 	username (aiorpcx.SOCKSUserAuth attribute)

W

 	
 	wait_closed() (aiorpcx.Server method)

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 aiorpcX

 		
 ChangeLog

 		
 Version 0.22.1 (25 May 2021)

 		
 Version 0.22.0 (25 Apr 2021)

 		
 Version 0.21.1 (24 Apr 2021)

 		
 Version 0.21.0 (11 Mar 2021)

 		
 Version 0.20.2 (10 Mar 2021)

 		
 Version 0.20.1 (06 Mar 2021)

 		
 Version 0.18.4 (20 Nov 2019)

 		
 Version 0.18.3 (19 May 2019)

 		
 Version 0.18.2 (19 May 2019)

 		
 Version 0.18.1 (09 May 2019)

 		
 Version 0.18.0 (09 May 2019)

 		
 Version 0.17.0 (22 Apr 2019)

 		
 Version 0.16.2 (21 Apr 2019)

 		
 Version 0.16.1 (20 Apr 2019)

 		
 Version 0.16.0 (19 Apr 2019)

 		
 Version 0.15.0 (16 Apr 2019)

 		
 Version 0.14.1 (16 Apr 2019)

 		
 Version 0.14.0 (15 Apr 2019)

 		
 Version 0.13.6 (14 Apr 2019)

 		
 Version 0.13.5 (13 Apr 2019)

 		
 Version 0.13.3 (13 Apr 2019)

 		
 Version 0.13.2 (12 Apr 2019)

 		
 Version 0.13.0 (12 Apr 2019)

 		
 Version 0.12.1 (09 Apr 2019)

 		
 Version 0.12.0 (09 Apr 2019)

 		
 Version 0.11.0 (06 Apr 2019)

 		
 Version 0.10.5 (16 Feb 2019)

 		
 Version 0.10.4 (07 Feb 2019)

 		
 Version 0.10.3 (07 Feb 2019)

 		
 Version 0.10.2 (29 Dec 2018)

 		
 Version 0.10.1 (07 Nov 2018)

 		
 Version 0.10.0 (05 Nov 2018)

 		
 Version 0.9.1 (04 Nov 2018)

 		
 Version 0.9.0 (25 Oct 2018)

 		
 Version 0.8.2 (25 Sep 2018)

 		
 Version 0.8.1 (12 Sep 2018)

 		
 Version 0.8.0 (12 Sep 2018)

 		
 Version 0.7.3 (17 Aug 2018)

 		
 Version 0.7.2 (16 Aug 2018)

 		
 Version 0.7.1 (09 Aug 2018)

 		
 Version 0.7.0 (08 Aug 2018)

 		
 Version 0.6.2 (06 Aug 2018)

 		
 Version 0.6.0 (04 Aug 2018)

 		
 Version 0.5.9 (29 Jul 2018)

 		
 Version 0.5.8 (28 Jul 2018)

 		
 Version 0.5.7 (27 Jul 2018)

 		
 Version 0.5.6

 		
 Framing

 		
 JSON RPC

 		
 Message interpretation

 		
 Message construction

 		
 RPC items

 		
 RPC Protocol Classes

 		
 Exceptions

 		
 Server

 		
 Sessions

 		
 SOCKS Proxy

 		
 Exceptions

 		
 Authentication

 		
 Protocols

 		
 Proxy

_static/up-pressed.png

_static/up.png

_static/plus.png

